
LECTURE-18

THREADS

Distributed Operating System

Threads

 In most traditional OS, each process

has an address space and a single

thread of control.

 It is desirable to have multiple threads

of control sharing one address space

but running in quasi-parallel.

Distributed Operating System

Introduction to threads

 Thread is a lightweighted process.

 The analogy: thread is to process as
process is to machine.

• Each thread runs strictly sequentially and
has its own program counter and stack to
keep track of where it is.

• Threads share the CPU just as processes
do: first one thread runs, then another does.

• Threads can create child threads and can
block waiting for system calls to complete.

Distributed Operating System

Cont…

 All threads have exactly the same address

space. They share code section, data

section, and OS resources (open files &

signals). They share the same global

variables. One thread can read, write, or

even completely wipe out another thread’s

stack.

 Threads can be in any one of several

states: running, blocked, ready, or

terminated.

Distributed Operating System

Cont..

 There is no protection between

threads:

 (1) it is not necessary (2) it should

not be necessary: a process is always

owned by a single user, who has

created multiple threads so that they

can cooperate, not fight.

Distributed Operating System

Threads

Computer Computer

Distributed Operating System

Thread usage

Mailbox Request for

work arrives
Kernel

Shared

block

cache

File server process Dispatcher thread

Worker thread

Dispatcher/worker model

Team model

Pipeline model

Distributed Operating System

Advantages of using threads

1. Useful for clients: if a client wants a file to be
replicated on multiple servers, it can have one
thread talk to each server.

2. Handle signals, such as interrupts from the
keyboard. Instead of letting the signal interrupt
the process, one thread is dedicated full time to
waiting for signals.

3. Producer-consumer problems are easier to
implement using threads because threads can
share a common buffer.

4. It is possible for threads in a single address
space to run in parallel, on different CPUs.

Distributed Operating System

Design Issues for Threads

Packages
 A set of primitives (e.g. library calls)

available to the user relating to threads is
called a thread package.

 Static thread: the choice of how many
threads there will be is made when the
program is written or when it is compiled.
Each thread is allocated a fixed stack. This
approach is simple, but inflexible.

 Dynamic thread: allow threads to be
created and destroyed on-the-fly during
execution.

Distributed Operating System

Mutex

 If multiple threads want to access the

shared buffer, a mutex is used. A mutex can

be locked or unlocked.

 Mutexes are like binary semaphores: 0 or 1.
 Lock: if a mutex is already locked, the thread will be blocked.

 Unlock: unlocks a mutex. If one or more threads are waiting

on the mutex, exactly one of them is released. The rest

continue to wait.

 Trylock: if the mutex is locked, Trylock does not block the

thread. Instead, it returns a status code indicating failure.

Distributed Operating System

Implementing a threads

package
 Implementing threads in user space

Runtime System

Kernel Kernel space

User space

Thread0 5

Distributed Operating System

Advantage

 User-level threads package can be implemented
on an operating system that does not support
threads. For example, the UNIX system.

 The threads run on top of a runtime system, which
is a collection of procedures that manage threads.
The runtime system does the thread switch. Store
the old environment and load the new one. It is
much faster than trapping to the kernel.

 User-level threads scale well. Kernel threads
require some table space and stack space in the
kernel, which can be a problem if there are a very
large number of threads.

Distributed Operating System

Disadvantage

 Blocking system calls are difficult to implement. Letting one

thread make a system call that will block the thread will stop

all the threads.

 Page faults. If a thread causes a page faults, the kernel does

not know about the threads. It will block the entire process

until the page has been fetched, even though other threads

might be runnable.

 If a thread starts running, no other thread in that process will

ever run unless the first thread voluntarily gives up the CPU.

 For the applications that are essentially CPU bound and

rarely block, there is no point of using threads. Because

threads are most useful if one thread is blocked, then another

thread can be used.

Distributed Operating System

Implementing threads in the

kernel

Kernel Kernel space

User space

Thread0 5

Distributed Operating System

Cont…

 The kernel knows about and manages the
threads. No runtime system is needed.
When a thread wants to create a new
thread or destroy an existing thread, it
makes a kernel call, which then does the
creation and destruction.

 To manage all the threads, the kernel has
one table per process with one entry per
thread.

 When a thread blocks, the kernel can run
either another thread from the same
process or a thread from a different
process.

Distributed Operating System

Scheduler Activations

 Scheduler activations combine the
advantage of user threads (good
performance) and kernel threads.

 The goals of the scheduler activation are to
mimic the functionality of kernel threads, but
with the better performance and greater
flexibility usually associated with threads
packages implemented in user space.

 Efficiency is achieved by avoiding
unnecessary transitions between user and
kernel space. If a thread blocks, the user-
space runtime system can schedule a new
one by itself.

Distributed Operating System

Cont..

 Disadvantage:

 Upcall from the kernel to the runtime

system violates the structure in the

layered system.

Distributed Operating System

ASSIGNMENT

 Differentiate between user level and

kernel level threads.

Distributed Operating System

